RL for 5G. Toy Example

- Consider a scenario with 2 gNBs, 1 UE
- States
- UE1 moves between state 1 and state 2 probabilistically
- Modeled as 2 state Markov chain
- Transition probabilities (next slide)
- Actions
- Association with gNB1 (A1) or with gNB2 (A2)
- Reward Matrix: Obtained using NetSim simulations

State 2

- If UE1 associates with gNB1 in S1 it sees a throughput of 10 Mbps. Else, if it associates with gNB2 then throughput is 1 Mbps
- If UE1 associates with gNB2 in S2 it sees a throughput of 10 Mbps. Else, if it associates with gNB1 then throughput is 1 Mbps
- The reward matrix with elements $R_{s a}$ is

$$
\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right]=\left[\begin{array}{cc}
10 & 1 \\
1 & 10
\end{array}\right]
$$

Q-Learning: Toy Example 1

We set arbitrary state transition probabilities $\mathrm{T}\left(\mathrm{s}^{\prime}, \mathrm{s}, \mathrm{a}\right)$ as

- T[S[1], A[1], S[1]] $=0.95$
- T[S[1], A[2], S[1]] $=0.05$
- $\mathrm{T}[\mathrm{S}[1], \mathrm{A}[1], \mathrm{S}[2]]=0.05$
- $\mathrm{T}[\mathrm{S}[1], \mathrm{A}[2], \mathrm{S}[2]]=0.95$
- T[S[2], A[1], S[1]] $=0.05$
- $\mathrm{T}[\mathrm{S}[2], \mathrm{A}[2], \mathrm{S}[1]]=0.95$
- T[S[2], A[1], S[2]] $=0.95$
- $\mathrm{T}[\mathrm{S}[2], \mathrm{A}[2], \mathrm{S}[2]]=0.05$

Q-Learning: A Toy Example 1

$$
Q^{\text {new }}\left(s_{t}, a_{t}\right) \leftarrow \underbrace{Q\left(s_{t}, a_{t}\right)}_{\text {current value }}+\underbrace{\alpha}_{\text {learning rate }} \cdot \overbrace{(\underbrace{\underbrace{r_{t}}_{\text {reward }}+\underbrace{\gamma}_{\text {discount factor }} \cdot \underbrace{\max _{a} Q\left(s_{t+1}, a\right)}_{\text {estimate of optimal future value }}}_{\text {new value (temporal difference target) }}-\underbrace{Q\left(s_{t}, a_{t}\right)}_{\text {current value }})}^{\text {temporal difference }}
$$

Bellman's equations for the optimal value $V^{*}(s)$:

$$
\begin{aligned}
V^{*}(1) & =\max _{a}\left(R(1, a)+\gamma\left(p V^{*}(1)+(1-p) V^{*}(2)\right)\right. \\
V^{*}(2) & =\max _{a}\left(R(2, a)+\gamma\left((1-p) V^{*}(1)+(p) V^{*}(2)\right)\right.
\end{aligned}
$$

To solve, we (i) substitute from the Reward matrix, and (ii) see that $V^{*}(1)=V^{*}(2)$ by symmetry. We get

$$
V^{*}(1)=10+\gamma V^{*}(1)
$$

For $\gamma=0.9$, we get

$$
V^{*}(1)=V^{*}(2)=\frac{10}{1-\gamma}=100
$$

Analytical calculation of the Q^{*} table

$$
\begin{aligned}
& Q_{11}^{*}=\mathrm{R}_{11}+\gamma\left(p V^{*}(1)+(1-p) V^{*}(2)\right) \\
& Q_{12}^{*}=R_{12}+\gamma\left(p V^{*}(1)+(1-p) V^{*}(2)\right)
\end{aligned}
$$

And similarly, for Q_{21} and Q_{22}
We then get (for $\gamma=0.9$)

$$
Q=\left[\begin{array}{cc}
\frac{10}{1-\gamma} & \frac{1+9 \gamma}{1-\gamma} \\
\frac{1+9 \gamma}{1-\gamma} & \frac{10}{1-\gamma}
\end{array}\right]=\left[\begin{array}{cc}
100 & 91 \\
91 & 100
\end{array}\right]
$$

Thus, the optimal policy is given by

$$
\begin{aligned}
\pi^{*}(1) & =\arg \max _{a} Q^{*}(1, a)=1 \\
\pi^{*}(2) & =\arg \max _{a} Q^{*}(2, a)=2
\end{aligned}
$$

Toy Example 1: Julia code and output

using POMDPs, QMDP, POMDPModels, POMDPTools, QuickPOMDPs using TabularTDLearning
using POMDPModels: TabularPOMDP
import Random
Random.seed!(1) \# Seed the RNG for repeatability
\# UE Count $=1$ and eNB count $=2$
$S=[1,2]$ \# Two states - state 1 and state 2
$A=[1,2]$ \# UE associates with eNB1 or eNB 2
T = zeros (2, 2, 2) \# Initialize the 3D Transition probability Matrix
$\mathrm{T}[\mathrm{S}[1], \mathrm{A}[1], \mathrm{S}[1]]=0.95 \quad \#$ t.prob ($\left.\mathrm{s}^{\prime}, \mathrm{a}, \mathrm{s}\right)$
$\mathrm{T}[\mathrm{S}[1], \mathrm{A}[2], \mathrm{S}[1]]=0.05$
$T[S[1], A[1], S[2]]=0.05$
$\mathrm{T}[\mathrm{S}[1], \mathrm{A}[2], \mathrm{S}[2]]=0.95$
$\mathrm{T}[\mathrm{S}[2], \mathrm{A}[1], \mathrm{S}[1]]=0.05$
$\mathrm{T}[\mathrm{S}[2], \mathrm{A}[2], \mathrm{S}[1]]=0.95$
$\mathrm{T}[\mathrm{S}[2], \mathrm{A}[1], \mathrm{S}[2]]=0.95$
$T[S[2], A[1], S[2]]=0.95$
$T[S[2], A[2], S[2]]=0.05$
$T[S[2], A[2], S[2]]=0.05$
$R=\operatorname{zeros}(2,2)$ \# Initializ
$R[S[1], A[1]]=10 \quad \# R(s, a)$
$R[S[1], A[2]]=1$
$R[S[2], A[1]]=1$
$R[S[2], A[2]]=10$
Discount_factor = 0.9
mdp = TabularMDP(T, R, Discount_factor);
\# use Q-Learning
exppolicy $=$ EpsGreedyPolicy(mdp, 0.02)
q_learning_solver = QLearningSolver(exploration_policy=exppolicy,
n_episodes=1,
max_episode_length $=10000$,
learning_rate $=0.5$,
eval_every=10000,
n_eval_traj=20,
verbose=true);
policy = solve(q_learning_solver, mdp)
print("\nThe value table is:\n")
show(policy.value_table)
print("\nThe optimal action for all states are (shown as (s -> a)): $\backslash n$ ") showpolicy(mdp, policy)

- Code written in Julia using POMDPs and TabularTDLearning
- T is a 3D matrix of the form T(s', a ,s)
- R is a $2 D$ matrix of the form $R(s, a)$
- Program output

The value table is:
[99.99 90.99;
90.91 99.99]

The optimal action for all states are (shown as (s -> a)):
1 -> 1
2 -> 2

- Output matches analysis (in previous slide)
- Self contained code: Can copy and paste it into VSCode or REPL

