
• Consider a scenario with 2 gNBs, 1 UE

• States
• UE1 moves between state 1 and state 2 probabilistically

• Modeled as 2 state Markov chain

• Transition probabilities (next slide)

• Actions
• Association with gNB1 (A1) or with gNB2 (A2)

• Reward Matrix: Obtained using NetSim simulations
• If UE1 associates with gNB1 in S1 it sees a throughput of 10

Mbps. Else, if it associates with gNB2 then throughput is 1 Mbps

• If UE1 associates with gNB2 in S2 it sees a throughput of 10
Mbps. Else, if it associates with gNB1 then throughput is 1 Mbps

• The reward matrix with elements 𝑅 is

𝑅 𝑅
𝑅 𝑅

= 10 1
1 10

RL for 5G. Toy Example 1/4

We set arbitrary state transition probabilities T (s’, s, a) as
• T[S[1], A[1], S[1]] = 0.95

• T[S[1], A[2], S[1]] = 0.05

• T[S[1], A[1], S[2]] = 0.05

• T[S[1], A[2], S[2]] = 0.95

• T[S[2], A[1], S[1]] = 0.05

• T[S[2], A[2], S[1]] = 0.95

• T[S[2], A[1], S[2]] = 0.95

• T[S[2], A[2], S[2]] = 0.05

Q-Learning: Toy Example 1 2/4

Q-Learning: A Toy Example 1 3/4

Bellman’s equations for the optimal value 𝑉∗ 𝑠 :

𝑉∗ 1 = max(𝑅 1, 𝑎 + 𝛾 𝑝𝑉∗ 1 + 1 − 𝑝 𝑉∗ 2

𝑉∗ 2 = max(𝑅 2, 𝑎 + 𝛾 (1 − 𝑝)𝑉∗ 1 + 𝑝 𝑉∗ 2

To solve, we (i) substitute from the Reward matrix,

and (ii) see that 𝑉∗ 1 = 𝑉∗(2) by symmetry. We get

𝑉∗ 1 = 10 + 𝛾𝑉∗ 1

For 𝛾 = 0.9, we get

𝑉∗ 1 = 𝑉∗ 2 =
10

1 − 𝛾
= 100

Analytical calculation of the 𝑄∗table

𝑄∗ = R + 𝛾 𝑝𝑉∗ 1 + 1 − 𝑝 𝑉∗ 2

𝑄∗ = 𝑅 + 𝛾 𝑝𝑉∗ 1 + 1 − 𝑝 𝑉∗ 2

And similarly, for 𝑄 and 𝑄

We then get (for 𝛾 = 0.9)

Q = =
100 91
91 100

Thus, the optimal policy is given by
𝜋∗ 1 = arg max 𝑄∗ 1, 𝑎 = 1

𝜋∗ 2 = arg max 𝑄∗ 2, 𝑎 = 2

Toy Example 1: Julia code and output 4/4
using POMDPs, QMDP, POMDPModels, POMDPTools, QuickPOMDPs
using TabularTDLearning
using POMDPModels: TabularPOMDP
import Random
Random.seed!(1) # Seed the RNG for repeatability
UE Count = 1 and eNB count = 2
S = [1, 2] # Two states - state 1 and state 2
A = [1, 2] # UE associates with eNB1 or eNB 2
T = zeros(2, 2, 2) # Initialize the 3D Transition probability Matrix
T[S[1], A[1], S[1]] = 0.95 # t.prob (s', a, s)
T[S[1], A[2], S[1]] = 0.05
T[S[1], A[1], S[2]] = 0.05
T[S[1], A[2], S[2]] = 0.95
T[S[2], A[1], S[1]] = 0.05
T[S[2], A[2], S[1]] = 0.95
T[S[2], A[1], S[2]] = 0.95
T[S[2], A[2], S[2]] = 0.05
R = zeros(2, 2) # Initialize the 2D Reward Matrix
R[S[1], A[1]] = 10 # R(s, a)
R[S[1], A[2]] = 1
R[S[2], A[1]] = 1
R[S[2], A[2]] = 10
Discount_factor = 0.9
mdp = TabularMDP(T, R, Discount_factor);
use Q-Learning
exppolicy = EpsGreedyPolicy(mdp, 0.02)
q_learning_solver = QLearningSolver(exploration_policy=exppolicy,

n_episodes=1,
max_episode_length=10000,
learning_rate=0.5,
eval_every=10000,
n_eval_traj=20,
verbose=true);

policy = solve(q_learning_solver, mdp)
print("\nThe value table is:\n")
show(policy.value_table)
print("\nThe optimal action for all states are (shown as (s -> a)):\n")
showpolicy(mdp, policy)

• Code written in Julia using POMDPs and TabularTDLearning

• T is a 3D matrix of the form T(s’, a ,s)

• R is a 2D matrix of the form R(s,a)

• Program output

The value table is:

[99.99 90.99;

90.91 99.99]

The optimal action for all states are (shown as (s -> a)):

1 -> 1

2 -> 2

• Output matches analysis (in previous slide)

• Self contained code: Can copy and paste it into VSCode or
REPL

